Loading...
Thumbnail Image
Publication

Codon-Driven Translational Efficiency Is Stable across Diverse Mammalian Cell States

Schmitt, Bianca M
Villar, Diego
White, Robert J
Kutter, Claudia
Abstract
Whether codon usage fine-tunes mRNA translation in mammals remains controversial, with recent papers suggesting that production of proteins in specific Gene Ontological (GO) pathways can be regulated by actively modifying the codon and anticodon pools in different cellular conditions. In this work, we compared the sequence content of genes in specific GO categories with the exonic genome background. Although a substantial fraction of variability in codon usage could be explained by random sampling, almost half of GO sets showed more variability in codon usage than expected by chance. Nevertheless, by quantifying translational efficiency in healthy and cancerous tissues in human and mouse, we demonstrated that a given tRNA pool can equally well translate many different sets of mRNAs, irrespective of their cell-type specificity. This disconnect between variations in codon usage and the stability of translational efficiency is best explained by differences in GC content between gene sets. GC variation across the mammalian genome is most likely a result of the interplay between genome repair and gene duplication mechanisms, rather than selective pressures caused by codon-driven translational rates. Consequently, codon usage differences in mammalian transcriptomes are most easily explained by well-understood mutational biases acting on the underlying genome.
Description
Whether codon usage fine-tunes mRNA translation in mammals remains controversial, with recent papers suggesting that production of proteins in specific Gene Ontological (GO) pathways can be regulated by actively modifying the codon and anticodon pools in different cellular conditions. In this work, we compared the sequence content of genes in specific GO categories with the exonic genome background. Although a substantial fraction of variability in codon usage could be explained by random sampling, almost half of GO sets showed more variability in codon usage than expected by chance. Nevertheless, by quantifying translational efficiency in healthy and cancerous tissues in human and mouse, we demonstrated that a given tRNA pool can equally well translate many different sets of mRNAs, irrespective of their cell-type specificity. This disconnect between variations in codon usage and the stability of translational efficiency is best explained by differences in GC content between gene sets. GC variation across the mammalian genome is most likely a result of the interplay between genome repair and gene duplication mechanisms, rather than selective pressures caused by codon-driven translational rates. Consequently, codon usage differences in mammalian transcriptomes are most easily explained by well-understood mutational biases acting on the underlying genome.
Date
2016-05-11
Journal Title
Journal ISSN
Volume Title
Publisher
PLOS
Collections
Research Projects
FP7/2010-2014
Marioni, John; Odom, Duncan; Rudolph, Konrad; Law Enforcement
20412
Marioni, John; Odom, Duncan; Rudolph, Konrad; University of Antwerp
WT098051
Marioni, John; Odom, Duncan; Rudolph, Konrad
615584
Marioni, John; Odom, Duncan; Rudolph, Konrad; Functional Morphology (FUNMORPH)
Journal Issue
Keywords
Citation
Embedded videos